Update on ACL Graft Selection

Paul Marchetto, MD
Associate Professor Orthopaedic Surgery
Thomas Jefferson University
Rothman Institute
ACL Graft Selection

ACL reconstruction is the:

- 6th most common procedure performed in Orthopedic Surgery
- 100,000 ACL reconstruction per year
- 85% of surgeons doing ACL surgery do < 10/yr
- Failure rate estimated at 10-15%
ACL Graft Selection

The ideal graft should

- Reproduce native anatomy and normal biomechanics
- Rapidly incorporate with strong initial fixation
- Low donor site morbidity
- Limit risk of disease transmission
- Allow for sufficient graft length and diameter
- Be cost effective
ACL Graft Selection

- Important variables to consider in ACL surgery
 - Graft selection
 - Graft fixation
 - Tunnel placement
 - Functional rehabilitation
ACL Graft Selection

- Bone Patella Bone Autograft was considered the “Gold Standard” for graft choice - this is rapidly changing
- With the evolution of ACL surgical technique and improvements in technology, there is more variability in graft choice
- With no “Gold Standard” it is important when choosing a graft, to understand the advantages and disadvantages of each.
ACL Graft Selection

- Autograft
 - Bone - Patellar - tendon bone
 - Semitendinosis and Gracilis
 - Quadriceps tendon
ACL Graft Selection

- Allograft
 - Bone patellar-tendon bone
 - Semitendinosis Gracilis
 - Achilles tendon
 - Quadriceps tendon
Criteria for ACL graft selection

- Biomechanics of normal ACL and ACL Graft
 - All current auto/allograft choices have higher ultimate strength than native ACL

- Biological Healing
 - BPTB autograft incorporate into bone tunnels as early as 6 weeks
 - Hamstring autograft – 12 weeks
 - Allograft as much as 6 months
Criteria for ACL graft selection

- Ease of harvest
 - Operative time: BPTB auto is the most difficult
 - Hamstring is faster to harvest
 - There is a learning curve to all types of graft harvesting with added potential for complications

- Return to play
 - Surgeon dependent
 - Lack of objective evidence in decision criteria for return to play
Criteria for ACL graft selection

- Donor site morbidity
 - BPTB auto > QT auto > Hamstring auto

- Donor site complications
 - Fracture of patella
 - Nerve injury with hamstring harvest
 - Anterior knee pain
Outline

- **Graft Choices**
 - **Autograft**
 - Patella Tendon
 - Hamstring
 - Quadriceps Tendon
 - **Allograft**
 - Patella Tendon
 - Achilles Tendon
 - Soft Tissue Allograft
 - Tibialis
 - Hamstring
 - Sterilization
Biomechanical Properties

<table>
<thead>
<tr>
<th>Graft</th>
<th>Ultimate Strength (N)</th>
<th>Stiffness (N/mm)</th>
<th>Cross Sectional Area (mm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intact ACL</td>
<td>2160</td>
<td>242</td>
<td>44</td>
</tr>
<tr>
<td>BPTB (10 mm)</td>
<td>2977</td>
<td>620</td>
<td>50</td>
</tr>
<tr>
<td>QDHS</td>
<td>4590</td>
<td>861</td>
<td>53</td>
</tr>
<tr>
<td>Quad Tendon (10 mm)</td>
<td>2352</td>
<td>463</td>
<td>62</td>
</tr>
<tr>
<td>Anterior Tibial Tendon (single)</td>
<td>3412</td>
<td>344</td>
<td>38</td>
</tr>
<tr>
<td>Posterior Tibial Tendon (single)</td>
<td>3391</td>
<td>302</td>
<td>48</td>
</tr>
</tbody>
</table>

All grafts have higher strength & stiffness than native ACL
Grafts - Autograft

- Bone-patella tendon-bone

 Pros
 - Most likely quickest healing
 - Excellent fixation
 - Good track record (results 90-95%)
 - Strength of graft

 Cons
 - Linked to PF pain & DJD
 - Risk of patella fracture
 - Patella Tendon rupture
 - Larger incision
 - More painful surgery
Grafts - Autograft

- **Hamstrings (Semitendinosis / Gracilis)**
 - **Pros**
 - Strongest tensile strengths (>4000 N)
 - Smaller incision
 - Pediatric patient
 - ? Hamstring regrowth
 - **Cons**
 - ? Fixation strength
 - Residual muscle weakness
 - Soft tissue to bone healing
 - Harvest – possible short graft
 - Graft size - diameter
Grafts - Autograft

- **Quadriceps Tendon**
 - **Pros**
 - Similar tensile strength to BPTB
 - Fixation similar to BPTB
 - Less anterior knee pain
Grafts - Autograft

- Quadriceps Tendon
 - Cons
 - Longer Incision
 - Less experience
 - Quad tendon weakness
Autograft Results

- BPTB vs. Hamstring
 - No study to date demonstrated a superiority of any graft source in stability and functional outcomes
 - Morbidity of hamstring graft harvest is less than the morbidity of bone-patella tendon-bone graft harvest
 - Laxdal et al. (Arthroscopy ’06)
 - Yasuda et al. (AJSM ’95)
 - Anterior knee pain, knee extension loss, kneeling pain & arthritis statistically greater with the use of BPTB grafts compared to HS grafts
 - Sajovic et al. (AJSM ’06)
 - Kartus et al. (Arthroscopy ’01)
 - Recent prospective 5 yr FU study of 2 equally matched groups: statistically higher incidence of OA of the knee in patients BPTB graft (50%) compared to HS graft (17%)
 - Sajovic et al. (AJSM ’06)
Autograft Results

- BPTB vs. Hamstring = Meta-analysis
 - Yunes et al (Arthroscopy ’01) = 411 patients
 - BPTB group had significant less laxity by KT-1000 than the hamstring group
 - BPTB = 18% higher rate of “return to preinjury level of activity”
 - Freedman et al (AJSM ’03) = 1976 patients
 - Increased PF pain, less laxity, lower rates of graft failure, improved stability, and higher patient satisfaction in the BPTB group
 - Prodromos et al (Arthroscopy ’05) = 56 studies
 - HS group = higher stability depending on fixation type
 - Goldblatt et al (Arthroscopy ’05) = 1039 patients
 - Anterior knee pain, increased kneeling pain, flexion deficit with BPTB autograft and extension deficit compared with HS autograft
 - BPTB more likely to result in normal Lachman exam, pivot shift exam, KT-1000 side-to-side difference <3mm, and fewer results with significant flexion loss
Autograft Results

- BPTB vs. Quad Tendon
 - Staubli et al (AJSM ’99)
 - BPTB > tensile strength
 - Lee et al. (Arthroscopy ’04)
 - Comparable results of BPTB vs. Quad
Autograft Results

- Comparison of all 3
 - Joseph et al. (Orthopaedics ’06)
 - Early comparison of 3 autografts
 - Free quad tendon group achieved earlier full knee extension
 - Less pain with quad tendon
 - Similar clinical results
Grafts - Allograft

- Public concern for disease transmission
- Biomedical Tissue Services (BTS) 2008
- “Dentist Pleads Guilty to Stealing and Selling Body Parts”
- Acquiring body parts from funeral homes without proper screening and consent
Grafts - Allograft

- Disease transmission and infection

- American Association of Tissue Banks
 ✓ AATB
AATB Screening guidelines

- Consent
- History of donor
 - Prior infections
 - Risk factors (homosexuality, sex for money, illegal drug use, hemophilia)
- Physical Exam
 - Needle wounds
 - Infection
AATB Screening guidelines

Screening Tests on Blood and Tissue

- Donors must test negative for antibodies to (HIV)
- Nucleic acid test (NAT) for HIV-1
- Hepatitis B surface antigen
- Antibody to hepatitis B core antigen
- Antibodies to the hepatitis C virus (HCV)
- Nucleic acid test (NAT) for HCV
- Antibodies to T-lymphotrophic virus, and syphilis
AATB Screening guidelines

✓ Nucleic acid testing for HIV and HCV
✓ A new provision of the AATB as of March 9, 2005
✓ Nucleic acid testing markedly shortens the window of time for the detection of the viruses.
AATB guidelines

- Tissue excisions must commence within 24 hours of asystole if the body was cooled
- Within 15 hours of death if the body was not cooled
- An aseptic technique is used to retrieve all tissues
- Tissues are cultured after harvest and prior to processing
- All musculoskeletal tissues are processed in a bacteriologically controlled and climate-controlled environment
Secondary Sterilization

- Eliminate all possibility of infection while maintaining all biologic and mechanical properties of the tissue
- No technique currently exists that fulfills these requirements
- Gamma irradiation is a popular method
- 2.5 megarads w/o significantly altering biomechanical properties of graft
- Eliminating bacterial surface contamination
Grafts - Allograft

- The estimated risk for HIV transmission with a connective tissue allograft is estimated to be 1:8,000,000.
- CDC reported 26 cases of allografts associated with bacterial infections in an estimated 1 million musculoskeletal allograft.
- The majority of infected grafts were from tissues processed by the same tissue bank. This tissue bank was closed.
- All were processed aseptically.
- None were terminally sterilized.
Allograft storage options

- Fresh Frozen allografts
 - between temperatures of -80 to -196 degrees F
 - allows for storage of up to 3 to 5 years,
 - the process kills the cells.

- Cryopreservation
 - tissue undergoes controlled-rate freezing
 - cellular water is extracted by glycerol and dimethylsulfoxide.
 - shelf life of 10 years and up to 80% of cells can remain viable.
Allograft storage options

- Freeze drying or lyophilization
 - Residual moisture level of <5%.
 - Stored at room temperature for up to 3 to 5 years.
 - Requires rehydration
Grafts - Allograft

- Bone-patella tendon-bone
 - Pros
 - Bone – bone healing
 - Graft size
 - Fixation
 - Incision size
 - Shorter OR time
 - Less post-op pain
 - Cons
 - Risk of infection
 - Slower healing
 - Cost
 - Availability
Grafts - Allograft

- Achilles tendon
 - Pros
 - Bone – bone healing on femur
 - Size of graft
 - Ease of retroscrew fixation
 - Smaller incision
 - Shorter OR time
 - Less post-op pain
 - Cons
 - Risk of infection
 - Slower healing
 - Cost
 - Availability
Grafts - Allograft

- **Soft tissue (hamstring / tibialis)**
 - **Pros**
 - Graft strength
 - Variability in size
 - Smaller incisions
 - Less post-op pain
 - Shorter OR time
Grafts - Allograft

- Soft tissue (hamstring / tibialis)
 - Cons
 - Risk of infection
 - Slower healing
 - Cost
 - Availability
Allograft Results

- Levitt et al (CORR '94)
 - BPTB / Achilles allograft
 - 85% success, no difference in grafts

- Caborn et al (Arthroscopy '02)
 - Tibialis tendon
 - No early failures and comparable results to auto

- Singal et al (Arthroscopy '07)
 - Tibialis tendon
 - 23% ACL failures requiring revision

- Indelli et al (CORR '04)
 - Achilles tendon
 - 92% returned to pre-injury activity level
Auto vs. Allo

- No level I randomized studies
- BPTB
 - Rihn et al (KSSTA ’06)
 - No clinical difference between 2 groups
 - Barrett et al (AJSM ’05)
 - Older patients > 40
 - Allo = quicker return to activity but increase laxity
 - Shelton et al (Arthroscopy ’97)
 - Similar results @ 2 & 5 years
 - Allo = less incision pain / extension loss
 - Harner et al (CORR ’96)
 - No differences in outcome
Auto vs. Allo

- **BPTB auto vs. Achilles allo**
 - Poehling et al (Arthroscopy ’05)
 - Similar long-term results
 - Less early pain and function limitation in allo group

- **BPTB – Meta-analysis**
 - Krych et al (Arthroscopy ’08) = 534 patients
 - NO DIFFERENCES when irradiated grafts were removed from analysis

- **Meta-analysis**
 - Prodromos et al (KSSTA ’07)
 - Allograft = 3x higher instability rates
<table>
<thead>
<tr>
<th>Graft</th>
<th>Biologic Incorporation</th>
<th>Initial Fixation</th>
<th>Morbidity</th>
<th>Ease of Harvest</th>
<th>Versatility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patella Tendon Auto</td>
<td>+ Bone Healing (6 weeks)</td>
<td>+ Interference screw</td>
<td>- Large incision</td>
<td>Debatable</td>
<td>Single tunnel only</td>
</tr>
<tr>
<td>Hamstring Auto</td>
<td>Tendon-bone healing (8-12 weeks)</td>
<td>Variable</td>
<td>+ Smaller incision, less post-op pain</td>
<td>Debatable</td>
<td>Single & double tunnel</td>
</tr>
<tr>
<td>Allograft Soft Tissue</td>
<td>- Slower</td>
<td>Variable</td>
<td>+ None Less post-operative pain</td>
<td>+ The best! No incision</td>
<td>Single & double tunnel</td>
</tr>
<tr>
<td>Quad Tendon Auto</td>
<td>+/- Bone & tendon healing</td>
<td>Variable</td>
<td>Possibly less than patellar tendon</td>
<td>Debatable</td>
<td>Single & possibly double tunnel</td>
</tr>
</tbody>
</table>
Return to Play

- Issue of return to play related to graft?
- Prospective, randomized study of hamstring or patellar tendon autograft
 - Pre-injury return > BPTB
 - O’Neill et al
- Meta-analysis
 - Return to pre-injury:
 - BPTB = 75%, HS = 64%
 - Yunes et al (Arthroscopy ’01)
- Return to play factors:
 - School / graduation / timing of season
 - Family / work demands
Based on these Results

- **My graft choice:**
 - Achilles Allograft
 - Hamstrings Autograft: Pediatric patients, any patient opposed to allograft
 - Soft tissue allograft: revisions, multiligament reconstructions

- **Fixation**
 - Bio absorbable interference screws
THANK YOU