Nourishing the Injured Athlete

Maureen Namkoong, MS, RD
Director, Nutrition and Fitness
Everyday Health Inc.
EATA January 2014
Overview

• High-level review of the healing process
• Considerations during healing and rehabilitation
• Nutritional management of the injured athlete
• Specific nutrients of interest
• Foods to discourage during injury
• Emerging areas
• Final takeaway recommendations
Process of Healing

• Inflammation
 o Initiation of the healing process
 o Clear the site of bacteria and cellular debris
 o Angiogenesis

• Proliferation
 o Deposition of the fibroblast and collagen matrix
 o Osteoblast formation and cartilaginous callus
 o Growth of new capillary networks

• Remodeling
 o Cycle of breaking down, rebuilding, and organization
 o Osteoblast/osteoclast activity
 o Simultaneous protein synthesis and degradation

• Net result – hypermetabolic state & ↑ protein needs
Injury Considerations

• Immobilization
 o Loss of muscle mass
 o Decrease in strength
 o Decrease in muscle function

• Metabolic impact of immobilization
 o Negative net muscle protein balance
 o Anabolic resistance
 • Amino acids
 • Decrease in insulin sensitivity
 o Bone collagen synthesis does respond to increased amino acid levels

• Decrease in activity
Considerations During Rehabilitation

• Anabolic state
 o Increase muscle
 o Increase strength

• Increasing activity
The Impact from a Nutrition Perspective
Nutritional Consideration

• Increased basal metabolic rate
 o All phases of healing require energy
 o 15-25% increase
 o Depends on the severity of the injury

• Changes in activity
 o Immobilized limb
 o Not participating in sport

• Energy needs will depend on activity level of the athlete
 o MET value of crutch walking = 5.0
 o MET value of walking for pleasure = 3.5
 o Stage of rehabilitation

• Increased requirement for protein

• Micronutrients

• Goals of rehabilitation
Nutrition Management

- Minimize catabolism
- Meet protein needs
- Meet energy needs
 - Balancing act
 - Individualized
 - Keep protein from being used as energy
- Ensure micronutrients are adequate
- Consider who is at highest risk
- Malnutrition will impede the healing process
How to Calculate Calories

Healthy

- Basal Metabolic Rate
- Activity Factor

Total Energy Expenditure

Injured

- Basal Metabolic Rate
- Activity Factor
- Stress (injury) Factor

Total Energy Expenditure
Comparison of Recommendations

<table>
<thead>
<tr>
<th>Healthy State</th>
<th>Injured State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy Needs</td>
<td>Energy Needs</td>
</tr>
<tr>
<td>- 1.8 moderate activity</td>
<td>- 1.0 – 1.2 Minor surgery</td>
</tr>
<tr>
<td>- 2.3 very heavy physical activity</td>
<td>- 1.1 – 1.3 Major surgery</td>
</tr>
<tr>
<td>- 30 kcal/kg FFM</td>
<td>- 1.25 – 1.3 Long-bone fracture</td>
</tr>
<tr>
<td>Protein Needs</td>
<td>Protein Needs</td>
</tr>
<tr>
<td>- 1.2 -1.4 g/kg for endurance</td>
<td>- 1.0 – 1.5 g/kg initial injury</td>
</tr>
<tr>
<td>- 1.2 -1.7 g/kg for strength</td>
<td>- 1.2 -1.7 g/kg rehab</td>
</tr>
<tr>
<td>Fat</td>
<td>Fat</td>
</tr>
<tr>
<td>- 20 – 35% calories</td>
<td>- 20 - 30% calories</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>Carbohydrates</td>
</tr>
<tr>
<td>- 7 – 8 g/kg</td>
<td>- 7 – 8 g/kg</td>
</tr>
</tbody>
</table>
Female 5’6”, 135 lb, 20 y/o

Healthy State
- Calories
 - 2600 - 3350
- Protein
 - 74 – 105 grams

Injured State
- Calories
 - 2450 - 3050
- Protein
 - 74 – 105 grams
Male 6’0”, 190 lb, 20 y/o

Healthy State

- Calories
 - 3750 - 5000
- Protein
 - 104 - 147

Injured State

- Calories
 - 3500 - 4300
- Protein
 - 104 – 147
Specific Nutrients

How some minerals, vitamins, and amino acids play a role in healing
May be helpful in healing

- **Zinc** plays a role in immune function, protein, and collagen synthesis, cellular proliferation, and wound healing
- **Vitamin C** functions in the synthesis of collagen connective tissue protein, acts on fibroblast proliferation, capillary formation, and neutrophil activity
- **Vitamin A** stimulates the immune system, enhances wound healing by stimulating epithelialization, and increases collagen deposition by fibroblasts
- **Glutamine** critical for the synthesis of fibroblasts, epithelial cells, and macrophages, essential for gluconeogenesis, and important in stimulating the inflammatory response
- **Arginine** substrate for protein synthesis, collagen deposition, and cellular growth
- **Calcium** essential for normal bone structure
- **Vitamin D** facilitates the absorption of calcium
Food Sources

- Zinc – meat, liver, eggs, and seafood
- Vitamin C – citrus fruit, green vegetables, tomatoes, and potatoes
- Vitamin A – liver, yellow vegetables, green leafy vegetables, eggs, and milk products
- Calcium – milk, yogurt, and cheese
- Vitamin D – sun exposure, fortified foods – milk and cereals
What to Avoid During Injury

- Low-density foods
- High-sugar
- High-fat
- Alcohol
How does all of this translate?

A day in the life through food
Typical Intake - Female

- Breakfast
 - Whole wheat bagel, cream cheese, yogurt & fruit smoothie with spinach and orange juice
- Snack
 - Apple, almonds, crackers
- Lunch
 - Turkey sandwich with lettuce and tomato, carrot sticks, orange, pretzel rod, and sports drink
- Snack
 - Hummus, veggie sticks, and a pita
- Dinner
 - Salmon, spinach, winter squash, brown rice, and milk
- Snack
 - Graham crackers, peanut butter, strawberries
- Totals
 - 2800 calories, 435 g CHO, 112 g Pro
Typical Intake - Male

- **Breakfast**
 - Whole wheat bagel, cream cheese, hard boiled egg, yogurt and fruit smoothie with spinach, peanut butter and orange juice

- **Snack**
 - Clementine, almonds, crackers

- **Lunch**
 - Turkey sandwich with lettuce, tomato, and cheese, carrot sticks, apple, pretzel rod, and sports drink

- **Snack**
 - Yogurt, granola, and sports drink

- **Dinner**
 - Chicken breast, whole wheat pasta with red sauce, broccoli, winter squash, and salad with dressing

- **Snack**
 - Cereal, milk, and pear

- **Totals**
 - 3900 calories, 600 g CHO, 172 g Pro
What Are We Still Learning?

Some Emerging Topics
Emerging Information

- Supplementation with immobilization
 - Protein supplementation
 - Branched-chain amino acids
 - Leucine
 - Omega-3
 - Creatine
Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans

- Hespel, et al.
- Double-blind trial
- Methods
 - 22 young healthy volunteers
 - Cast was used to immobilize the right leg for two weeks
 - Half the subjects received creatine monohydrate – 20 g down to 5g daily
 - Subjects participated in a knee-extension rehabilitation program
 - Measured the cross-sectional area of the quadricep with NMR imaging
 - Measured maximal knee extension power with isokinetic dynamometer
 - Needle biopsy taken from the vastus lateralis were examined for myogenic regulatory factors
- Results
 - Oral creatine supplementation stimulates muscle hypertrophy during rehabilitation strength training

Journal of Physiology (2001) 536.2
The Effect of Creatine Supplementation on Strength Recovery After ACL Reconstruction

- Tyler, et al.
- Double-blind, prospective, and randomized clinical trial

Methods
- 60 patients were randomized into placebo and creatine
- 20 g/day for the first 7 days then dosage was reduced to 5g/day
- Formal rehabilitation began at 1 week
- Quadriceps and hamstring strength and power were measured isokinetically. Hip flexor, abductor, and adductor were measured with a handheld dynamometer prior to surgery, at 6 wks, 12 wks, or 6 months after surgery.

Results
- Patients do not benefit from creatine supplementation during the first 12 weeks of rehabilitation after ACL reconstruction
Take Away

• Encourage athletes to continue their normal intake
• High quality protein, whole grains, fruits, & veggies
• Carefully watch those at most risk
• If you have concerns speak with your team dietitian and/or doctor
Thank You

namkoong.m@gmail.com
maureen@everydayhealthinc.com
References