EBP Session: Incorporating Injury Surveillance into Clinical Decision Making

Matt Hoch, PhD, ATC
School of Physical Therapy and Athletic Training
Old Dominion University, Norfolk, VA
• No conflicts of interest.
Acknowledgement

• EATA Planning Committee

• Jennifer McKeon, PhD, ATC
 – Ithaca College, Ithaca, NY
Objectives

• Define “injury surveillance” for athletic training clinical practices.

• Describe how injury surveillance can be incorporated into an EBP framework.

• Review several common measures for evaluating injury trends.

• Discuss how injury surveillance can inform clinical practice and be incorporated into decision making.
• Over 7 million students participate in interscholastic athletics and 500,000 participate at the collegiate level.

• Injuries commonly occur as a consequence of participation which has personal and societal implications.
 – Time loss
 – Long-term health
 – Financial burden

• Understanding injury patterns is an important step in evidence based decision making.
 – Designing protective equipment
 – Rule changes for competition
 – Providing information to consumers
Ankle sprains represent 16% of all high school sport injuries.

Females are 2x more likely to sustain a first-time ACL injury.

For every one pound increase in neck strength, the odds of concussion decreased 5%.

The study of injury occurrence in athletic populations.
Injury Surveillance - The documentation of injuries.

- Requires systematic, consistent, and accurate injury documentation records.
- Foundation for understanding injury rates, injury risk, making decisions for injury prevention.
- Large scale (n=10,000) or small scale (n=500)
 - Both can be valuable in making decisions for your clinical practice.
Injury Surveillance

Large Scale Injury Surveillance

• Benefits:
 – Large number of participants
 – Longitudinal documentation
 – Well defined reporting mechanisms and resources
 – Strong inferences can be made for injury trends in specific sports, level of competition, and modifiable risk factors
Small Scale Injury Surveillance

- Injury documentation associated with a single clinical site, small group of related clinical sites, or athletic league.
- May occur as part of routine clinical documentation and standard of practice.
- Information can be used in much the same way as the data collected from large scale injury surveillance programs
 - Focused on target population
 - Less precise because of smaller sample size
Connecting Injury Surveillance to EBP

Best Available Research Evidence

Clinical Expertise & Data

Patient/Client Values & Preferences

Potential for optimal decision making

Large scale injury surveillance

Small scale injury surveillance

EBP
Injury and Exposure

What constitutes an *injury* and a unit of *exposure*?
- Basis for measuring injury trends.
- Different surveillance systems may have different definitions or criteria.
- Consider your goals, clinical questions, and objectives.
- Consistency is crucial

Injury - An incident of interest.

NCAA ISP:
1) Occurred during organized intercollegiate practice or competition.
2) Required medical attention by an AT or physician.
3) Participation restriction for ≥1 day

Exposure – An opening up to the chance of sports injury occurring.

NCAA ISP:
Participation in sanctioned practice or competition.
• Many epidemiology statistics can be easy to calculate and interpret.

• Establish the clinical question or objective.
 – “What is the proportion of participants who currently have an injury right now?”
 – “How many participants are expected to acquire a new injury over the course of a season?”
 – “How many participants do I need to treat to prevent a single injury?”

http://kpc.am/15gEWao
Prevalence is the segment of a group who are injured at a given time point.

\[
\text{Prevalence} = \frac{\text{Number of Injured Participants}}{\text{Number of Total Participants}} \times 100
\]

“What is the proportion of participants who currently have an injury?”

- Measure of the injury problem you currently have to manage.
- Larger the prevalence, larger the injury problem.
Prevalence ratio determines if the prevalence of injury is greater in one group than another.

\[
\text{Prevalence Ratio} = \frac{\text{Prevalence Group 1}}{\text{Prevalence Group 2}}
\]

- A PR of 1 would indicate the prevalence is the same in both groups.
- A PR >1 indicates the prevalence is greater in Group 1.
- A PR <1 indicates the prevalence is greater in Group 2.
Incidence rate refers to the number of injuries that occur per a given time frame.

- The concept of *exposure* is revisited

\[
\text{Incidence Rate} = \frac{\text{Number of New Injuries}}{\text{Total Exposure Time}}
\]

- Typically requires total number of exposures and injuries across all participants during a specific period of time.
- Expressed as number of injuries per athlete exposure (0.052 injuries per AE or 5.2 injuries per 1000 AE).
- “How many participants are expected to acquire an injury over the course of a season?”
Incidence rate ratio determines if the incidence rate of injury is greater in one group than another.

\[
\text{Incidence Rate Ratio} = \frac{\text{Incidence Rate 1}}{\text{Incidence Rate 2}}
\]

- An IRR of 1 would indicate the incidence rate is the same in both groups.
- An IRR >1 indicates the incidence rate is greater in Group 1.
- An IRR <1 indicates the incidence rate is greater in Group 2.
Incidence proportion is a preliminary step in quantifying injury risk and a measure of the probability of injury.

\[
IP = \frac{\text{Number of Newly Injured Participants During a Certain Period}}{\text{Number of Total Participants at Risk in the Beginning of the Period}} \times 100
\]

- Interpreted as the probability or risk of sustaining an injury during the specific period of time (an athletic season).
- Greater IP represent a greater probability of sustaining an injury.
Risk ratio is a comparison of risk between two groups, seasons, or clinical interventions.

\[
\text{Risk Ratio} = \frac{\text{Incidence Proportion Group 1}}{\text{Incidence Proportion Group 2}}
\]

- A RR of 1 would indicate the risk of injury is the same in both groups.
- A RR >1 indicates the risk of injury is greater in Group 1.
- A RR <1 indicates the risk of injury is greater in Group 2.
Absolute risk reduction represents the risk difference between an intervention group and a control group.

\[
\text{ARR} = \text{IP Intervention Group} - \text{IP Control Group}
\]

- An ARR of 0% indicates the intervention did not reduce the risk of injury.
- An ARR >0% indicates the intervention reduced injury risk.
- An ARR <0% indicates the intervention increased injury risk.
Numbers needed to treat to benefit (NNTB) represents the number of participants who need to be treated with the intervention to prevent a single injury compared to receiving no intervention.

- Should be strongly considered when examining a prevention program for your clinical practice.

\[
\text{NNTB} = \frac{1}{\text{ARR}}
\]

- NNTB values closer to 1 are desirable as this would indicate treating 1 participant would prevent 1 injury.
- NNTB values closer to infinity indicate that the intervention is not capable of preventing injury.
- Clinical judgment is required to determine what is an acceptable NNTB for adoption into your clinical practice.
Odds represent the probability of an injury occurring compared to the probability of it not occurring.

\[\text{Odds} = \frac{IP}{1-IP} \]

Odds ratio compares the odds of sustaining an injury between two groups.

\[\text{Odds Ratio} = \frac{\text{Control Group Odds}}{\text{Intervention Group Odds}} \]

- OR of 1.0 indicates the odds are identical for both groups.
- OR >1.0 indicates an increased odds of injury occurring in the control group.
- OR <1.0 indicates an increased odds of injury occurring in the intervention group.
Key Points

• Basic injury documentation combined with simple calculations can provide new insights into your clinical practice.

• Some key points to remember:
 – Rates are used to determine or compare the magnitude of an injury problem
 – Risk is used to determine the chance of injury
 – You can use these calculations to compare across teams, sports, seasons, etc. and make evidence-based determinations about the injury prevention strategies that you might use.
 – Consistent and accurate documentation is a standard of clinical practice, and can inform the decision-making process.

THANK YOU

m hoch@odu.edu