Response Shift and Functional Outcomes in Individuals with Chronic Ankle Instability

Eastern Athletic Trainer’s Conference 2017
Funded By: EATA, Inc.

Cameron J. Powden, PhD, ATC
Cameron.Powden@indstate.edu
Objectives

• Summarize the existing literature pertaining to chronic ankle instability.

• Discuss the concepts of response shift and its effect on the assessment of patient reported outcomes.

• Describe the methods of a study evaluating the effects of a 4-week comprehensive, evidence-based rehabilitation program.

• Summarize the findings of this multifaceted treatment approach to address the impairments associated with CAI.

• Translate the findings and measures to clinical practice.
Background – Ankle Sprains

• Most commonly injured joint in the physically active
 • 10 to 30% of all athletic injuries (Fong et al. 2007)

• Ankle sprains account for 86% of all ankle injuries
 (Dizon and Reyes 2010)

• Approximately 23,000 ankle sprains occur each day within the US. (Waterman et al. 2010)

• Results in nearly 2 million sprains each year (Waterman et al. 2010)

• May be highly underestimated
 • 55% of ankle sprain sufferers do not seek medical treatment (McKay et al. 2001)
• Results in pain, swelling and ecchymosis

• Reductions in mobility and function lead to performance deficits as well as absence from competition and work (Doherty et al. 2014)

• 25% of individuals miss work or school for greater than 7 days (Doherty et al. 2014)
• Account for approximately 600,000 emergency departments each year (Waterman et al. 2010)

• General Estimate: $495 to $4,667/sprain (Bielska 2015)

• Interscholastic Athlete: ~$9,000/sprain (Knowles 2007)

• Annual aggregate healthcare cost of $4.2 billion (Waterman et al. 2010)
Background – Chronic Ankle Instability

• Nearly 65% of sufferers modify physical activity for years following. (Hiller et al. 2012)

• One out of three will develop CAI (Konradsen et al. 2002)
 • Recurring ankle sprains (Hertel 2002)
 • Episodes of giving way (Hertel 2002)
 • Decreased HRQL (Houston et al. 2015)

• Long-Term Consequences
 • Decreased physical activity (Hubbard-Turner and Turner 2015)
 • Increased risk of ankle osteoarthritis (Valderrabano et al 2006)
 • Increased fall risk later in life (Hass et al. 2010)
Background – CAI Contributing Factors

Chronic Ankle Instability

- Laxity
- Arthrokinematics
- Degenerative Factors
- Synovial Factors
- Postural Control
- Neuromuscular Control
- Strength
- Postural Control/Altered Gait

Mechanical Insufficiencies

- Range of Motion
 - (Hoch et al. 2012)

Functional Insufficiencies

- Balance
 - (Arnold et al. 2009; Hiller et al. 2010; Munn et al. 2010; Wikstrom et al. 2010)
- Functional Activities
 - Donovan et al. 2016)
- Repetitive Ankle Sprains

(Hertel 2002)
Background – ICF Model’s Influence

Health Condition
(Disease, Disorder, or Injury)

Chronic Ankle Instability

Body Structure & Function

Activity

Participation

Environmental Factors

Personal Factors

Contextual Factors
Health Related Quality of Life Deficits

- CAI HRQL deficits identified
 - Region-specific
 - Global
 - Dimension-specific
Background – CAI Rehabilitation Paradigm

(Donovan al. 2016)
Background – Accuracy and Response Shift

Rehabilitation = Catalyst

Response Shift
- Internal Standards
- Values
- Conceptualization

Change in Perceived HRQL

Perception of Normal
Perception of Baseline

Baseline → End of Care

Observed Change
Observed Change
The literature has yet to determine:

• The overall effectiveness of CAI interventions to improve patient-oriented outcomes.

• The effects of a comprehensive rehabilitation program on clinician- and patient-oriented outcomes.

• The overall impact of response shift within orthopedic conditions.

• The potential for response shift in those with CAI following rehabilitation.
CAI Interventions and HRQL

• **Purpose**
 - Provide a synthesis of the published evidence investigating the effect of CAI interventions on HRQL.

• **Key Findings**
 - Efficacy to improve ankle-specific self-reported function.
 - Lack of analysis regarding other types of PROs.
Response Shift in Orthopedics

• **Purpose**
 • Synthesize the evidence regarding the presence of RS following orthopedic rehabilitation

• **Key Findings**
 • Evidence of small potential for RS
 • High amount of variability

![Graph showing underestimation and overestimation of pre-disability in PROs](image)
The Problem Revisited

The literature has yet to determine:

• The overall effectiveness of CAI interventions to improve patient-oriented outcomes.

• The effects of a comprehensive rehabilitation program on clinician- and patient-oriented outcomes.

• The overall impact of response shift within orthopedic conditions.

• The potential for response shift in those with CAI following rehabilitation.
Specific Aim I and Hypothesis

• **Specific Aim I:**
 • Examine the effects of a four-week comprehensive evidence-based intervention for individuals with CAI on:
 • Clinician-oriented measures of DFROM, dynamic postural control, and strength.
 • Laboratory-oriented measures of static postural control.

• **Hypothesis:**
 • Following a four-week comprehensive intervention clinician- and laboratory-oriented measures will improve in those with CAI.
Specific Aim II & Hypothesis

• **Specific Aim II:**
 - Examine the effect of a four-week comprehensive evidence-based intervention on patient-oriented outcomes in those with CAI.
 - Determine if individuals with CAI who undergo this treatment experience response shift.

• **Hypothesis:**
 - Individuals with CAI will experience improvements in patient-oriented outcomes.
 - Response shift will occur following a four-week comprehensive evidence-based intervention.
• **Study Design:**
 • Interrupted time-series design
Subjects

• **Inclusion Criteria:**
 • History of ≥1 ankle sprain
 • ≥2 episodes of “giving way” in past 3 months
 • “Yes” to ≥5 questions on the Ankle Instability Instrument
 • ≤25 on the Cumberland Ankle Instability Tool
 • ≥14 on the Godin Leisure-Time Exercise Questionnaire

• **20 individuals with self-reported CAI completed the investigation**

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male = 5; Female = 15</td>
</tr>
<tr>
<td>Ankle</td>
<td>Right = 9, Left = 11</td>
</tr>
<tr>
<td>Age (years)</td>
<td>24.35 ± 6.95</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>169.29 ± 10.10</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>70.58 ± 12.90</td>
</tr>
<tr>
<td>Previous Ankle Sprains (#)</td>
<td>2.95 ± 1.50</td>
</tr>
<tr>
<td>Episodes of Giving Way (3 Months)</td>
<td>5.6 ± 6.54</td>
</tr>
<tr>
<td>Time Since Last Sprain (Months)</td>
<td>18.5 ± 17.22</td>
</tr>
<tr>
<td>Ankle Instability Instrument (“yes”)</td>
<td>6.85 ± 1.31</td>
</tr>
<tr>
<td>Cumberland Ankle Instability Tool</td>
<td>16.05 ± 5.55</td>
</tr>
<tr>
<td>Godin Leisure-Time Exercise Questionnaire</td>
<td>63.65 ± 25.86</td>
</tr>
</tbody>
</table>
All subjects completed a 4-week rehabilitation program

Home-Based Intervention
- Completed daily
 - Gastrocnemius-Soleus Stretching
 - Progressive Ankle Strengthening
- Compliance tracked by subjects using a home intervention log.

Laboratory-Based Intervention
- Three times per week (12)
 - Anterior-to-Posterior Talocrural Joint Mobilizations
 - Progressive Balance Training Program
 - Slow-Reversal Proprioceptive Neuromuscular Facilitation (PNF)
- Compliance and progress tracked by investigator
Home-Based Intervention

• Gastrocnemius-Soleus Stretching
 • Two Stretches on a half foam roller
 • Held to the point of mild discomfort
 • 3 x 30s for each

• Progressive Ankle Strengthening
 • 4-way Thera-Band
 • Week 1 and 2
 • Blue band (heavy resistance)
 • Week 3 and 4
 • Black band (special heavy resistance)
 • Sets and repetitions:
 • Week 1 – 3 x 10
 • Week 2 – 4 x 10
 • Week 3 – 3 x 10
 • Week 4 – 4 x 10
• Anterior-to-posterior Talocrural Joint Mobilizations
 • Maitland Grade III
 • 4 sets of 2 minute oscillations

• Progressive Balance Training
 • 5 balance tasks
 • 7 levels per task

• Slow-Reversal PNF
 • Concentric D1 and D2 patterns of the ankle
 • Sets and repetitions progressed based on session
Disease-Oriented Measures

- Dorsiflexion Range of Motion
- Dynamic Balance
- Static Balance
- Isometric Strength
Patient-Oriented Measures

- Disablement in the Physically Active Scale (mDPA)
 - Physical Summary Component
 - Mental Summary Component

- Foot and Ankle Ability Measure (FAAM)
 - Activities of Daily Living (ADL)
 - Sport
 - Quick-FAAM

- Fear-Avoidance Belief Questionnaire (FABQ)
 - Physical Activity (PA)
 - Work (W)
Testing Procedures

Clinician-Oriented Measures

Disease-Oriented Measures
Specific Aim I – Variables

• **Independent Variables**
 • Time

• **Dependent Variables**
 • Dorsiflexion ROM
 • WBLT
 • Dynamic Balance
 • Y-Balance (ANT, PM, PL)
 • Static Balance
 • Time-to-Boundary
 • Mean Minimal (MM) and Standard Deviation (SD) of MM in the AP and ML directions.
 • Ankle Strength
 • Dorsiflexion, Plantarflexion, Inversion, Eversion
 • Hip Strength
 • Abduction, Adduction, Flexion, Extension
Specific Aim I – Statistical Analysis

• Separate One-Way ANOVAs
 • Time
 • WBLT, Y-Balance, Strength

• Separate 2 x 3 ANOVAs
 • Time
 • Vision
 • TTB MM and TTB SD

• Sidak Post Hoc Comparisons
Specific Aim I – Statistical Analysis

• Minimal Detectable Change
 • ICC (2,1)
 • SEM x $\sqrt{2}$

• Standardized Response Mean
 • Ratio of Change and SD of Change
 • Weak (≤0.39)
 • Moderate (0.40-0.69)
 • Strong (≥0.70)
Specific Aim I – Results

Time Main Effect, $p < 0.001$

![Graph showing time main effect with statistical significance](image)

- Pre: 8.59 ($p < 0.001$)
- Post: 9.75 ($p < 0.001$)
- 2-Week: 10.13 ($p < 0.348$)

Effect Size (ES):
- Pre-Post $Δ$: 1.17 (ES = 1.29, CI = 0.82–1.80)
- Pre-2-Week $Δ$: 1.54 (ES = 1.27, CI = 0.86–1.71)

Minimal Detectable Change (MDC): 0.54
Specific Aim I – Results

Time Main Effect
\(p < 0.001 \)

\(p = 0.603 \)
\(p = 0.013 \)
\(p = 0.001 \)

\(p < 0.001 \)
\(p < 0.001 \)
\(p = 1.00 \)

\(p < 0.001 \)
\(p < 0.001 \)
\(p = 0.857 \)

Indiana State University
Specific Aim I – Results

Time Main Effect

\[p < 0.001 \]

- **ES = 0.72**
 - CI = 0.12–1.34
- **ES = 0.99**
 - CI = 0.43–1.49

Time Main Effect

\[p < 0.001 \]

- **ES = 1.22**
 - CI = 0.80–1.70
- **ES = 1.35**
 - CI = 0.87–1.75

Time Main Effect

\[p < 0.001 \]

- **ES = 1.13**
 - CI = 0.49–1.57
- **ES = 1.15**
 - CI = 0.56–1.80
Specific Aim I - Results

TTB MM ML
- Vision $p < 0.001$
- Time $p = 0.054$
- Vision x Time $p = 0.125$

TTB SD ML
- Vision $p < 0.001$
- Time $p = 0.325$
- Vision x Time $p = 0.236$

TTB MM AP
- Vision $p < 0.001$
- Time $p = 0.008$
- Vision x Time $p = 0.007$

TTB SD AP
- Vision $p < 0.001$
- Time $p = 0.012$
- Vision x Time $p = 0.037$
Specific Aim I – Results

TTB MM AP

ES = 0.23
CI = -0.52-0.37

- **Pre-2 Week Δ**
 - 0.81

- **Pre-Post Δ**
 - 0.71

- **MDC**
 - 0.81

- **ES = 0.78**
 CI = 0.44-1.18

- **Pre**
 - 5.02
- **Post**
 - 4.88
- **2-Week**
 - 5.83

- **p = 0.593**
- **p = 0.002**

- **ES = 0.04**
 CI = -0.38-0.62

- **Pre-2 Week Δ**
 - 0.81

- **Pre-Post Δ**
 - 0.71

- **MDC**
 - 0.81

- **p = 0.51**

- **ES = 0.07**
 CI = -0.48-0.47

- **Pre-2 Week Δ**
 - 0.81

- **Pre-Post Δ**
 - 0.71

- **MDC**
 - 0.81

- **p = 0.743**
- **p = 0.855**
- **p = 0.51**
Specific Aim I – Results

TTB SD AP

Pre-Post ∆ Pre-2-Week ∆ MDC

ES = 0.23 CI = -0.67-0.22

p = 0.313 p = 0.013

Pre Post 2-Week

3.22 3 3.73 p = 0.012

ES = 0.61 CI = 0.24-1.02

p = 0.392

Pre Post 2-Week

1.51 1.53 1.61 p = 0.831

ES = 0.03 CI = -0.28-0.67

p = 0.391
Specific Aim I – Results

Inversion
Time Main Effect
\(p < 0.001 \)

Eversion
Time Main Effect
\(p < 0.001 \)

Dorsiflexion
Time Main Effect
\(p < 0.004 \)

Plantarflexion
Time Main Effect
\(p < 0.001 \)
Specific Aim I – Results

Inversion
Time Main Effect
p < 0.001

Eversion
Time Main Effect
p < 0.001

Dorsiflexion
Time Main Effect
p < 0.004

Plantarflexion
Time Main Effect
p < 0.001
Specific Aim I – Results

Abduction
Time Main Effect
$p < 0.003$

Adduction
Time Main Effect
$p < 0.001$

Flexion
Time Main Effect
$p < 0.038$

Extension
Time Main Effect
$p < 0.001$

![Graphs showing data for Abduction, Adduction, Flexion, and Extension with corresponding p-values.](image-url)
Specific Aim I – Results

Abduction Time Main Effect
\[p < 0.003 \]

Adduction Time Main Effect
\[p < 0.001 \]

Flexion Time Main Effect
\[p < 0.038 \]

Extension Time Main Effect
\[p < 0.001 \]

ES = 0.96
CI = 0.56-1.42

ES = 1.10
CI = 0.62-1.70

ES = 0.41
CI = -0.03-0.90

ES = 0.84
CI = 0.43-1.34

ES = 0.54
CI = -0.11-1.10

ES = 0.75
CI = 0.31-1.24

ES = 0.61
CI = 0.12-1.04

ES = 0.89
CI = 0.43-1.36
Specific Aim I – Conclusions
Specific Aim II – Variables

• Independent Variables
 • Time
 • Type of PRO Assessment
 • Type of Change

• Dependent Variables
 • Region-Specific PROs
 • FAAM-ADL, FAAM-Sport, Quick-FAAM
 • Global PROs
 • mDPA-PSC, mDPA-MSC
 • Dimension-Specific PROs
 • FABQ-PA, FABQ-W
Specific Aim II – Statistical Analysis

- Separate One-Way ANOVAs
 - Time

- Separate One-Way ANOVAs
 - Type of PRO Assessment

- Separate 2 x 2 ANOVAs
 - Time
 - Type of Change

- Sidak Post Hoc Comparisons
Specific Aim II – Statistical Analysis

• **Minimal Detectable Change**
 • ICC (2,1)
 • SEM x $\sqrt{2}$

• **Standardized Response Mean**
 • Ratio of Change and SD of Change
 • Weak (≤ 0.39)
 • Moderate (0.40-0.69)
 • Strong (≥ 0.70)
Specific Aim II – Results

Response Shift

- Pre
- Then Post
- Then 2-Weeks

- **FAAM-ADL**
 - $p = 0.124$

- **FAAM-Sport**
 - $p = 0.136$

- **Quick-FAAM**
 - $p = 0.184$

- **mDPA-PSC**
 - $p = 0.246$

- **mDPA-MSC**
 - $p = 0.976$

- **FABQ-PA**
 - $p = 0.125$

- **FABQ-W**
 - $p = 0.760$
Specific Aim II - Results

Response Shift
Adjusted Change vs
Traditional Change

FAAM-ADL
- Type: $p = 0.032$
- Time: $p = 0.081$
- Type x Time: $p = 0.740$

FAAM-Sport
- $p = 0.084$
- Time: $p = 0.1492$
- Type x Time: $p = 0.163$

Quick-FAAM
- $p = 0.192$
- Time: $p = 0.093$
- Type x Time: $p = 0.309$

mDPA-PSC
- Type: $p = 0.070$
- Time: $p = 0.032$
- Type x Time: $p = 0.089$

mDPA-MSC
- Type: $p = 0.945$
- Time: $p = 0.791$
- Type x Time: $p = 0.921$

FABQ-PA
- Type: $p = 0.168$
- Time: $p = 0.582$
- Type x Time: $p = 0.410$

FABQ-W
- Type: $p = 0.698$
- Time: $p = 0.252$
- Type x Time: $p = 0.176$
Specific Aim II - Results

FAAM-ADL
Type: $p = 0.032$

<table>
<thead>
<tr>
<th>Traditional Change</th>
<th>Response Shift</th>
<th>Difference</th>
<th>MDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.857</td>
<td>9.911</td>
<td>2.054</td>
<td>3.88</td>
</tr>
</tbody>
</table>

mDPA-PSC
Time: $p = 0.032$

<table>
<thead>
<tr>
<th>Post</th>
<th>2-Weeks</th>
<th>Difference</th>
<th>MDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.957</td>
<td>9.65</td>
<td>1.693</td>
<td>6.76</td>
</tr>
</tbody>
</table>

Values are reversed to have positive values reflect improvement.
Specific Aim II – Response Shift Conclusions

Assessment of Response Shift

Pre = Then Post = Then 2-Weeks

Response Shift Adjusted Change

MDC
Specific Aim II - Results

Traditional Change

- **Pre**
 - FAAM-ADL: $p < 0.001$
 - FAAM-Sport: $p = 0.071$
 - Quick-FAAM: $p = 0.043$

- **Post**
 - FAAM-ADL: $p < 0.001$
 - FAAM-Sport: $p = 0.071$
 - Quick-FAAM: $p = 0.087$

- **2-Week Follow Up**
 - mDPA-PSC: $p < 0.001$
 - mDPA-MSC: $p = 0.087$
 - FABQ-PA: $p < 0.001$
 - FABQ-W: $p = 0.160$
Specific Aim II - Results

FAAM-ADL

\[p < 0.000 \]

- **Pre**: 88.63
- **Post**: 95.77
- **2-Week**: 97.2

\[p = 0.049 \]

\[p < 0.001 \]

\[p < 0.001 \]

ES = 1.38

CI = 0.98-1.73

Quick-FAAM

\[p = 0.043 \]

- **Pre**: 79.38
- **Post**: 91.88
- **2-Week**: 93.33

\[p = 0.487 \]

\[p < 0.001 \]

\[p = 0.117 \]

ES = 1.43

CI = 1.01-2.52

ES = 1.45

CI = 1.05-2.23
Specific Aim II - Results

mDPA-PSC

\[p < 0.000 \]

Values are reversed to have positive values reflect improvement.
Specific Aim II - Results

FABQ-PA

\[p < 0.000 \]

![Graph showing FABQ-PA scores](#)

Values are reversed to have positive values reflect improvement.
Discussion

ADL – ES=1.38
Quick – ES=1.43

FAAM-ADL
Quick- FAAM

Balance – ES=1.22
Manual – ES=1.10

mDPA-PSC

FABQ-PA

FAAM-Sport
• Changes Surpassed the MDC
• Large Effect Sizes (1.58, 1.21)

Reductions in fear

Improvements in physical activity
Discussion

Response Shift

Catalyst
- Rehabilitation Vs Surgery

Mechanisms
- Coping
- Social Comparison
- Goal Reordering
- Reframing Expectations

Response Shift
- Internal Standards
- Values
- Conceptualization

Changes in perceived HRQL

Time Post-Intervention
- 2 Weeks Vs
- 6 Weeks to 2 Years
Discussion

Specific Aim I
• 1.17 to 1.54 cm
Hoch et al. 2012
• 1.4 cm
Mckeon & Wikstrom 2016
• 2.23 cm

Similar to findings of theraband interventions

Specific Aim I
• > ~0.40 kg/n
Donovan et al. 2016
• > ~0.30 kg/n

How do these changes relate to injury risk?
Discussion

(Hoch et al. 2012) (Mckeon et al. 2008)
Limitations

- Lack of blinding
- Lack of a control/sham group
- Relatively short follow up period
 - Long-term effects
 - More time needed for response shift?
- Did not base intervention off of individual impairments
Future Directions

• Evaluate the true long-term effects
 • Can maintained exercises prolong effects?

• Prospective evaluation of injury and giving way risk.
 • Did we reduce the incidence of future ankle trauma?

• Employ an individualized impairment based intervention
 • Can treating an individual’s impairments improve treatment efficacy?
Conclusions

• A response shift was not detected in those with CAI following a comprehensive intervention.

• A multidimensional profile of HRQL was enhanced.

• Common disease-oriented detriments were enhanced.
Acknowledgments

Dissertation Committee

Emily Hartley, Kathleen Hogan, Megan Pathoomvanh, Chase Feldbrugge
Thank You! Questions?

Cameron J. Powden: Cameron.Powden@indstate.edu