Power As a Cost Effective and Practical Clinical Intervention to ACL Injury

Paul A. Cacolice, PhD, LAT, ATC, CSCS
Westfield State University, Westfield, MA
Purpose:

- Explore the research surrounding power as clinical Anterior Cruciate Ligament (ACL) injury identification and prevention strategy.
Learning Objectives

- **EVALUATE** the ease of existing intervention strategies for the four identified factor areas of ACL injury risk in their own practice settings.

- **APPRECIATE** the challenge of caring for a population at elevated ACL injury probability, while being unable to offer cost-effective risk identification or practical intervention strategies.

- **COMPARE** predictive value of power for ACL risk identification to other predictive strategies.

- **CONTRAST** the established guidelines to optimize force dissipation with landing to the tactical limitations in field- and court-based sport.

- **IDENTIFY** practical strategies to develop power for the Athletic Trainer in a high school or college setting.
Conflicts of Interest

- No financial conflicts of interest for this presentation.
Q: Why Are ACL Injuries *Still* A Problem?

O’Donoghue DH. 1964
https://images.app.goo.gl/qLp1KVzFG2c98eaB8
https://images.app.goo.gl/kkFYQRLG6r7KaBji7
Q: Why Are ACL Injuries *Still* A Problem?

Anterior cruciate ligament (ACL) injuries are common, costly, and debilitating.

- Scope of the Challenge
 - Incidence / Prevalence
 - Sex Bias
 - Long-Term Effects
 - Costs
Q: Why Are ACL Injuries *Still* A Problem?

Anterior cruciate ligament (ACL) injuries are common, costly, and debilitating.

- Incidence: 80,000 – 250,000 / Year [Griffin, et al.]
 - Surgical rate 120,000 / Year [Kim, et al. Mall, et al.]

- Change in rate
 - 66-77% change [Hootman, et al.]
 - [Kim, et al, Mall, et al.]

- Highest rate for injury is adolescent to young adult athletic and active populations.
Q: Why Are ACL Injuries *Still* A Problem?

Anterior cruciate ligament (ACL) injuries are common, costly, and debilitating.

- **Sex Bias**
 - 2.29-4.14x as likely to tear
 - [Ireland, et al., Arendt, et al., Gwinn, et al.]
 - Reported as high as 4.75 to 9.74
 - [Gray, et al., Gwinn, et al.]
 - Higher estimates did not match complicating factors
 - Rate is increasing
 - [Hootman, et al.]
Q: Why Are ACL Injuries *Still* A Problem?

Anterior cruciate ligament (ACL) injuries are common, costly, and debilitating.

- **Long-Term Challenges**
 - PMHx ACL injury
 - Re-Injury, OR= 5.24
 - Contralateral Injury
 - Osteoarthritis, OR=3.17
 - [Swärd, et al.]
 - ([Shelbourne, et al., Ratzlaff, et al.]
 - Psychosocial Challenges
 - Depression
 - Anxiety
 - [Kvist, et al.]
Q: Why Are ACL Injuries *Still* A Problem?

Anterior cruciate ligament (ACL) injuries are common, costly, and debilitating.

- Health Care Costs
 - Operative / nonoperative
 - (Surg) $24,452 in 2011 US dollars / $28,305 in 2020
 - (NonSurg) $32,276 in 2011 dollars / $37,362 in 2020
 - Time lost
 - 6 to 12 month, or longer
 - Annual Total Cost $8-$18 Billion

https://images.app.gov.gl/ZpMhZhCgVP12MoV8
The Scope of the Challenge

- Prevent rather than treat.

- **Process:** [Van Mechlin, et al]
 - Identify causal factors
 - Implement an Intervention
 - Assess the Intervention
 - Reassess the Impact and Return to Step 1.
Don’t We Already Have ACL Prevention?

- Existing ACL Injury Prevention Programs
 - FIFA 11+
 - SportsMetrics
 - PEP
- Number Needed to Treat = 1
Don’t We Already Have ACL Prevention?

Number Needed to Treat [Sugimoto, et al.]

- NNT = 108 (1 non-contact injury)
- NNT = 120 (1 overall injury)

What is the Risk Reduction?

- Existing ACL Injury Prevention Programs
 - FIFA 11+
 - SportsMetrics
 - PEP

- Number Needed to Treat = 1
Learning Objective 1

- **APPRECIATE** the challenge of caring for a population at elevated ACL injury probability, while being unable to offer cost-effective risk identification or practical intervention strategies.
Learning Objective 2

- **EVALUATE** the ease of existing intervention strategies for the four identified factor areas of ACL injury risk in their own practice settings.
Risk Factor Identification

- Intrinsic Risk Factors
 - Anatomical
 - Hormonal

- Extrinsic Risk Factor
 - Environmental
 - Biomechanical
Risk Factor Identification

- Intrinsic Risk Factors
 - Anatomical
 - Hormonal

Intercondylar Architecture
- Notch Width
- Notch Shape
- Notch to ACL Width Ratio

Static Measures
- Pelvic Positioning
- Subtalar Positioning / Navicular Positioning
- Q-Angle

Stenosis more likely due to
- A Smaller Intercondylar Notch
- A more ‘A’ Shaped Intercondylar
- A smaller Notch-to-ACL size ratio
- All three are more common in females than in males.

- Each could offer greater tissue wear against wall, impingement, guillotine-ing.
- None of the three offer practical or cost-effective identification or intervention.
Risk Factor Identification

Intrinsic Risk Factors
- Anatomical
- Hormonal

Intercondylar Architecture
- Notch Width
- Notch Shape
- Notch to ACL Width Ratio

Static Measures
- Pelvic Positioning [Shultz, et al.]

Anterior Pelvic Tilt + hip anteversion + navicular drop + knee positioning = predicts anterior knee laxity.
- Challenging to quantify pelvic tilt.
- Does not explain sex difference in equation.

Navicular Drop predicts ACL Injured or non-injured individuals.
- Practical and Cost Effective to Measure.
- May be the result, and not the cause.

Q-Angle not yet correlated to ACL Injury risk, partly due to clinical test metrics.
Risk Factor Identification

Hormonal Differences

- Are we sure measurements are precise?
 - Is it one hormone, or change?

- Great individual variation of hormonal profile, and release timing
- Varying strategies to assess menstrual cycle.

Is it any one hormone, or the change in hormones?
Follicular?
Follicular + Luteal?
Ovulatory?
Menstrual?
Pre-Menstrual?
Risk Factor Identification

Intrinsic Risk Factors
- Anatomical
- Hormonal

Extrinsic Risk Factor
- Environmental
 - Friction at the Shoe-Surface Interface
 - Field temperature [Orchard]

Greater friction at SSI increases risk, but improved sport performance.

Warmer, Drier, ‘stickier’ surfaces increase injury risk.

These factors offer ease of intervention, but don’t explain sex-based differences.
Risk Factor Identification

Intrinsic Risk Factors
- Anatomical
- Hormonal

Extrinsic Risk Factor
- Environmental
 - Biomechanical

Biomechanical
- Landing and Cutting
- Neuromuscular
Risk Factor Identification

Biomechanical

- Landing and Cutting
 - ↑ Excursion = ↑ Time [Lephart, et al.]
 - Tactical decision do not allow for ↑ Excursion [Liederbach, et al.]
Risk Factor Identification

- **Biomechanical**
 - **Landing and Cutting**
 - SLL = ↑ ACL injury incidence [Olsen, et al.]
 - LESS does not prospectively predict ACL Injury [Padua, et al.]
 - LE Kinematics = GRFs [Cacolice, at al.]

- **Intrinsic Risk Factors**
 - Anatomical
 - Hormonal

- **Extrinsic Risk Factor**
 - Environmental
 - **Biomechanical**
Risk Factor Identification

Biomechanical
- Landing and Cutting

Ankle Dorsiflexion PROM predicts 17% of GRFs
Risk Factor Identification

- **Neuromuscular**
 - **Hip Lateral Rotators**

- Intrinsic Risk Factors
 - Anatomical
 - Hormonal

Hip Lateral Rotator Peak Force predicts 22% of GRFs
Risk Factor Identification

- Neuromuscular
 - Use The Force!

- GRFs predict ACL Injury [Hewett, et al.]

- Intrinsic Risk Factors
 - Anatomical
 - Hormonal

- Extrinsic Risk Factor
 - Environmental
 - Biomechanical
Risk Factor Identification

- Neuromuscular
 - Joint Stability and Tissue Strain are dependent upon applied forces and torques [Devita & Skelly, Lafortune, et al. Neumann, Andrews & Axe]

- Intrinsic Risk Factors
 - Anatomical
 - Hormonal

- Extrinsic Risk Factor
 - Environmental
 - Biomechanical
Learning Objective 3 & 4

- **COMPARE** predictive value of power for ACL risk identification to other predictive strategies.

- **CONTRAST** the established guidelines to optimize force dissipation with landing to the tactical limitations in field- and court-based sport.
Learning Objective 5

- **IDENTIFY** practical strategies to develop power for the Athletic Trainer in a high school or college setting.
Power

1. What is it?
2. How do we measure it?
3. How can we increase it?
What is Power

- Power = (Mass / Distance) / Time
- Rapid and strong muscle contraction
- Over
- A Big(ger) Range of Motion
What is Power

- Power = (Mass / Distance) / Time

- Functional Tests
 - Margaria-Kalamen Test
 - Single Leg Triple Hop
 - Vertical Leap
 - Standing Long Jump

- Olympic Lifts
 - Snatch / Clean / Jerk
Testing Power

1. What is it?
2. How do we measure it?
3. How can we increase it?

- Functional Tests
 - Margaria-Kalamen Test
 - Single Leg Triple Hop
 - Vertical Leap
 - Standing Long Jump

- Olympic Lifts
 - Snatch / Clean / Jerk

\[\text{Power} = \text{Mass} \times \text{Vertical distance} \times \frac{9.8}{t} \]
Testing Power

1. What is it?
2. How do we measure it?
3. How can we increase it?

- Functional Tests
 - Margaria-Kalamen Test
 - Single Leg Triple Hop
 - Vertical Leap
 - Standing Long Jump
- Olympic Lifts
 - Snatch / Clean / Jerk

Power = ?
Testing Power

1. What is it?
2. How do we measure it?
3. How can we increase it?

- Functional Tests
 - Margaria-Kalamen Test
 - Single Leg Triple Hop
 - Vertical Leap
 - Standing Long Jump
- Olympic Lifts
 - Snatch / Clean / Jerk

Power = ?

https://images.app.googl/4zJVzq98yg7xTaiH9
https://images.app.googl/YPCm3bz127CMwXCj8

Power = ?
Testing Power

1. What is it?

2. How do we measure it?

3. How can we increase it?

- Functional Tests
 - Margaria-Kalamen Test
 - Single Leg Triple Hop
 - Vertical Leap
 - Standing Long Jump

- Olympic Lifts
 - Snatch / Clean / Jerk

Power = ?
What is Power

- Maximize neural activation
- Maximize Strength
- Maximize Range of Motion

1. What is it?
2. How do we measure it?
3. How can we increase it?
Periodization

- Base / Corrective – 6 weeks
- Hypertrophic – 6 weeks
- Power – 6 weeks
- Maintenance – 8 weeks

1. What is it?
2. How do we measure it?
3. How can we increase it?
Thank you