Beyond the Lateral Ankle Sprain; High Ankle Sprains and role of the Deltoid.

Eric Nussbaum, MEd, LAT, ATC
Clinical Instructor, Rutgers, RWJMS, New Brunswick, NJ

Justin Fleming, DPM, FACFAS
Foot and Ankle Specialist
Assistant Clinical Instructor
Rutgers, RWJMS,
About this presentation

- Background, anatomy, clinical exam, review of imaging

Dr. Justin Fleming, DPM, FACFAS

- Surgical options for care, associated considerations
Disclosure

• I have no disclosures
Because ankle injury rarely happens with a single MOI
Objectives:

- Identify athletes with multi-ligament injury to their ankle.
- Review relevant ankle anatomy.
- Adapt treatment options based on clinical symptoms.
- Analyze conservative and surgical options for athletes with chronic ankle sprains.
Background

- 28,000 ankle sprains/day
- Most common injury in sports
- 45% of all athletic injuries
- Most involve lateral ligaments
 - Inversion

Only consistent risk factor
 - Hx prior ankle sprain
 - Benyon 2002
Conclusion: Lack of understanding “can impact how care is delivered”
Background

- Outcomes associated with injuries is less than optimal
 - High recurrence rates
 - Prolonged symptoms
 - Diminished QOL
 - Reduced physical activity
 - Propensity toward CAI
 - Heterotopic Oscification
 - Increased risk for ankle OA
Background: Additional Considerations

- Chronic ankle instability is commonly associated with other lesions

Could there be other things contributing to the problem?

- Osteoarthritis

- 32-74% of individuals w/ prev hx sprain, have residual symptoms, CAI, perceived instability

- Literature shows 13-35% report pain after successful ligament reconstruction
 - Choi WJ, AJSM 2008
Additional Considerations

- **Most congruent joint in body**
 - Large weight bearing surface
 - Tibia/Fibula act like wrench gripping nut (talus)

- **Intact syndesmosis is key to ankle function**
 - 1mm of widening of syndesmosis changes contact area by 42%,
 - Greatest effects seen in first 1mm
 - 2mm - 56% - *Ramsey & Hamilton JBJS, 1976*
Chronic Lateral Ankle Instability

The Effect of Intra-Articular Lesions on Clinical Outcome

Woo Jin Choi,* MD, Jin Woo Lee,*† MD, PhD, Seung Hwan Han,‡ MD, PhD, Bom Soo Kim,* MD, and Su Keon Lee,* MD
From the *Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seodaemun-gu, Seoul, South Korea, and the ‡Department of Orthopaedic Surgery, Ajou University School of Medicine, Yeongtong-gu, Suwon, South Korea

- 65 ankles arthroscopy, CAI
- **63/65 (96.9%)** intra-articular lesions
 - 81.5% Soft tissue impingement
 - 38.6% ossicles at lateral malleolus
 - 29.2% syndesmosis widening
 - 23.1% OCL
 - 10.8% osteophyte formation
- **Syndesmosis widening** was strongest risk indicator for patients lack of satisfaction
- Odds Ratio 11.1(95%, CI: 2.2-55.4)
Background: Additional Considerations

- Syndesmotic injury CAN occur in athletes enduring chronic inversion and axial loading
- Traditionally 1-20% of ankle sprains are syndesmotic injury
- Sports 40-74% of all ankle sprains demonstrate syndesmotic involvement
Few Studies ACCURATELY identify injured structures with Imaging.
Must know your Anatomy and Biomechanics!
Anatomy Considerations

- **Ankle classically synovial hinge joint**
 - Triplaner motion
 - Functions much like a torque converter

- **Ankle really multiple joints**
 - Distal Tibiofibular joint
 - Talocrural
 - Subtalar
 - Consider the whole picture

www.UOANJ.com
Ankle Motion

- Primarily in Sagital plane
 - DF – 15-20 deg
 - PF – 45-55 deg
- Most stable in DF – (Closed packed)
- Some slight talar ext rotation w/ DF
 - 5-6 deg
 - Foot Pronates slightly w/ DF
- Similar internal rotation w/ PF
- Syndesmosis stressed w/ Extremes of motion
 - DF/PF
 - **Functional throughout ROM**
 - Fibula is dynamic bone
 - Migrates distally, posteriorly, ER w/ PF, opposite for DF
 - Sarafin Anat Foot Ankle 1993
Lateral Ligaments

- AITFL
- ATFL
- CFL
- PTFL
Medial Side – Deltoid Ligament

- Superficial and Deep layers
 - Stabilize medial ankle
 - Limit A/P, Lateral trans of talus
 - Restricts talus Abd at TCJ
 - Sup: (3-4 bands)
 - resists hindfoot eversion
 - Deep: (2 bands)
 - resists ER Talus, Valgus load
Interosseus Membrane

• Thick tissue between Tibia/Fibula
• Active role in tib/fib function
• Helps to transfer compressive forces to tensile forces
• Lateral support to fibula for wt bearing
• Broader above vs below
Syndesmosis

- Binds distal tibia/fibula together
 - Provide lateral support
 - Attenuate forces
 - Stability for movement
- Fibula oriented from posterior proximal to anterior distal
- Four ligaments
 - AITFL
 - PITFL
 - Transverse
 - IOL
A Ring of Stabilization
Talus

- Large weight bearing surface
 - Multiple articulations
- Wider Anterior vs Post 2.5mm
- 60% of talus surface articular cartilage
 - Avg thickness 1.1mm W
 - Avg thickness 1.3 mm M
 - Less elastic vs knee
 - vanDijk CN, KSSTA 2010
- Chondral lesions
 - Medial vs Lateral
 - Ant Lateral
 - Post Medial
Syndesmotic Recess

Incisura:

- Fluid filled recess
- Connects with TCJt.
- Mean height 12.6mm
- Single celled synovium
- Linear recess increase with injury – 16.2mm vs. 12.6
- 54 vs. 1.4 cm

Kim JS, Radiology 2007;242:225-235
Tenderness Length

- Injury height varies HAS
- "Tenderness Length"
 - From tip of Fibula
- Predict disability
 - $5 + 0.93(TL) = \text{Days}$
 - ($P = 0.0001$)
- Important landmark
 - IOL
 - 5-6cm
Study by Hoefnagels

“Biomechanical Comparison of the Interosseus Tibiofibular Ligament and the Anterior Inferior Tibiofibular ligament
FAI 2007, 28(5) May

- IL Sig Stiffer then AITFL
 - 234 +/- 122 N/nm vs 162 +/- 64 N/mm (31%)

- Mean Failure Greater
 - 822 +/- 298 vs 625 +/- 255 (24%)

- During loading most failed via substance tears

- Plays key role in stabilizing ankle
HAS

- Above the Talocrural Jt
- Traditionally rotational in nature
 - Hyper-pronation injury
 - Often involve contact w/ another athlete
 - Inability to “push-off”, cut to affected side
- Involved in more treatments and disability time vs lateral
- Can have lasting long-term implications
Special Tests - Palpation

- **Palpate for tenderness**
 - Depends on evaluator's ability to find ligament/IM
 - Most frequently positive test – *Alonso*, JOSPT, 1998
 - 100% *Nussbaum*, AJSM 2001

- **Highly significant relationship between clinical and MRI findings** (P<.0001)
 - *Calder J*, Arthroscopy 2016
Background: Additional Considerations

• Location of swelling may indicate structures involved
 – Amount of swelling does not correlate with self-reported function after acute sprain
 • Man IO, MSSE 2005

• Point tenderness over injured ligaments is a good indicator of injured structures.
 • Fallat L, J Foot Ankle Surg 1998

• Sometimes HAS have minimal swelling

• Injury RARELY involves a single directional force.
Single Leg Hop Test

- **Functional Testing**
 - Inability to raise on their toes
 - Taylor

- **Progressional Assessment**
 - Double leg, single leg heel raise
 - Double leg hop, single leg hop
 - From toes, heel doesn’t touch the ground

- > Fib Loading at heel rise
 - Axial load exceeds BW
 - Whittle

- Raising on toes produces hindfoot inversion
- At heel lift, ankle DF, force vector lateral to ankle because of toe out
 - **Stress the syndesmosis!**

- Great sideline test!

Ring disruption = Functional disability

www.UOANJ.com
Special Tests:

• **Dorsiflexion/External Rotation Stress Test**
 - **Kleiger Test**
 - Doesn’t measure instability
 - If present indicative of injury/irritation
 - Oglivie-Harris-JARS, 1994
 - Best inter-tester reliability
 - Alonso, JOSPT, 1998
 - Nussbaum 55/60, AJSM 2001
Squeeze Test

- **Squeeze Test**
 - Compress at mid calf
 - Causes separation of distal joint
 - Teitz Foot Ankle Int, 1998

- Least Positive Test,
 - + w/ Significant Inj
 - Alonso JOSPT, 1998
 - 20/60 - Nussbaum AJSM 2001

- + Test correlates w/ longer return
 - Hopkinson 1990, Taylor 1992,

- 9.5 x increased likelihood surgery
 - Calder 2016
Other Special Tests:

- **Cotton** –
 - Ankle N, grasp heel, M/L rock talus
 - + when extreme injury
 - Excessive translation only in sever
- **Fibular Translation Test**
 - + if excessive translation, boggy end feel
 - High rate FP
- **Tape Test**
 - Circumferential taping, Improve function/pain
 - Amendola N,
Limited Literature – 114 papers
- Evaluated 8 clinical tests
- Can’t rely on single test
 - Imaging necessary for diagnosis
- IR Reliability “Good” for ER Test (ICC\(_{2,1} > 0.70\))
- Other tests: “Fair-Poor” reliability
PLAIN RADIOGRAPHS

Rule out Fracture
- Frank vs Latent Diastasis

ANKLE SERIES

Lateral

Mortise
Radiographic Measurements

- Tibia fibula relationship
 - Tibiofibular clear space \{TFC\} (A-B)
 - 1 cm above plafond
 - <6mm AP, mortise
 - Tibiofibular overlap \{TFO\} (C-B)
 - 6mm or greater
 - < 42% of fibular width
 - Medial clear space \{MCS\} (E-F)
 - < 2-4mm
 - Measurements may vary w/ positioning
Stress Radiographs

- Debated Value
- Latent Diastasis
- AP/ Mortise views TFO, MCS
- Evidence: Category B

Porter, D. 2009 AAOS ICL. 58:575-581
- More sensitive vs Mortise view (>2mm)
 - Better ID partial and complete injuries
- <50% fibular overlap
 - Sensitivity – 0.67 PPV – 0.91
 - Specificity – 0.89 NPV – 0.63
- Rarely found + when wasn’t present
Bone Bruise/Occult fx

- Not much written in literature
- Don't frequently get MRI's acutely
- They do occur

Brown, KW – Am J Roentgenol; 182(1) 2004 - MRI study of 53 syndesmotic sprains - Evidence of Bone Bruise 24% acute, 4/36 chronic - Additional finding ATF injury 70%

Pinar, H – KSSTA, 1997; 5 (2) - MR w/ Gadolinium • 50% w/ injury to both ATF/CF • 16% isolated ATF sprains • More frequently Medial then lateral

Talus

Chan VO, Clin Radiol 2013
- Inversion, Medial Mal/Medial talus edema
- 92% complete ATF tear
- Delayed recovery, prolonged RTS

www.UOANJ.com
Musculoskeletal Ultrasound

- Point of care use
- Dynamic
 - AITFL
- A lot of potential
 - Need more literature
- Learning curve
 - User dependent
 - Must know anatomy
High ankle sprain = Syndesmosis Injury

- Inherently Stable
- Normal Mortise

- Unstable Injury
- Widened Mortise

+ clinical exam
- Xrays

High ankle sprain
Syndesmosis disruption

Do you need additional imaging?
Additional Imaging: MRI

MRI:
- Not often done acutely
- Soft tissue + bone
 - Individual ligaments
 - stretched, wavy, irregular
 - Edema, bone bruise, OCL
 - Lambda Sign
 - Ryan PR, FAI 2014
- Cuts <3mm
- Doesn’t do a great job w/ instability
 - 50-65% sensitive

MRI/Arthrogram:
- Proximal dye leakage
- Increased recess ht
- Significantly increases sensitivity >90%
 - Kim JS, Radiology 2007
 - Brown KW, AJR 2004
 - Requires physician injection
Syndesmotic injury:

<table>
<thead>
<tr>
<th></th>
<th>Grade I</th>
<th>Grade II</th>
<th>Grade III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exam</td>
<td>Pain with Squeeze or ER stress test</td>
<td>Pain with Squeeze or ER stress test</td>
<td>Pain with Squeeze or ER stress test</td>
</tr>
<tr>
<td>Tenderness</td>
<td>Mild</td>
<td>Moderate</td>
<td>Intense</td>
</tr>
<tr>
<td>Weight Bearing</td>
<td>Full</td>
<td>Difficult</td>
<td>Impossible</td>
</tr>
<tr>
<td>Radiographs</td>
<td>No mortise widening</td>
<td>No mortise widening</td>
<td>Mortise Widening</td>
</tr>
<tr>
<td>Edema</td>
<td>Minimal</td>
<td>Moderate</td>
<td>Diffuse</td>
</tr>
</tbody>
</table>

- **Non-Fx**
 - Based on ligaments (1-4)
 - Tenderness
 - Wt Bearing
 - Frank vs Latent diastasis
- **Based on height of tenderness**

West Point Grading Scale

Gerber et al., 1998 FAI

- 3 Injury of the posterior inferior tibiofibular ligament or avulsion of the posterior malleolus
- 4 Medial malleolus fracture or injury to the deltoid ligament
A Sub Category:
The “Low – High Ankle” Sprain

- Pain above talocrural joint
- Tenderness over AITF ligament
- Tenderness length < 6cm
- Mechanism primarily inversion—Can also be hyper–pronation
- Associated w/ individuals w/ 2nd degree lateral laxity (CFL inj)
- Previous Hx of lateral ankle sprain (Progression in injury?)
- Functional disability—Can’t hop from toes
- Shorter disability than traditional HAS
- More common than previously thought
- Painful ligament, anterior impingement, synovitis
- ATF injury, syndesmosis is less likely to be unstable
- Calder J, Arthroscopy 2016

www.UOANJ.com
Proposed Grading Scale
Non-Fracture Syndesmotic Injury

First Degree:
- Low HAS
- <6cm prox tenderness
- Pt tender AITFL
- Can’t hop from toes
- Normal Xrays
- Associated with lateral laxity
 - CFL Injury
- Treatment conservative
 - NWB 2-4 days
 - 5-7 days avg disability

Second Degree:
- HAS
- > 6-10 cm prox tenderness
- >2 ligament tenderness
- Can’t hop
- Rotational mechanism
- Lateral View Stress Xray
- Consider MRI w/ gadolinium actuely
- 2-4 week avg recovery,
- Non-wt bearing 4 days
- Consider arthroscopy

Third Degree:
- Tenderness >10cm
- Suspect diastasis, assoc PMT injury, deltoid injury
- Stress Xrays
- MRI w/ gadolinium
 - Consider 3D Wt Bearing CT if neg MRI
- Most likely surgical candidate,
Syndesmosis and Lateral Ankle Sprains in the National Football League

DARYL C. OSBAHR, MD; MARK C. DRAKOS, MD; PADHRAIG F. O’LOUGHLIN, MD; STEPHEN LYMAN, PHD; RONNIE P. BARNES, MA, ATC; JOHN G. KENNEDY, MD; RUSSELL F. WARREN, MD

Polled NFL Team Physicians:
- Non-Diastasis injury
- Conservative Tx
 - 28 would use a boot
 - 14 WBAT
 - 12 PWB
 - 6 NWB
 - 3 Cast
Motion even w/ immobilization

Kadakia A, FAI Apr 2008

Weight bearing in a boot the ligament is stressed

Cast—Fiberglass Cast (8.4°); XP—Pneumatic Walker(15.4°); FP—Foam Walker (16°);
DJ—MaxTrax Walker (19°); SP—SP Walker (39°);
None—No immobilization
Conservative/Aggressive Approach

- Need a period of NWB
 - 4 days
- Most stable in neutral
- Posterior splint vs boot
- Remove daily for therapy
 - Modalities
 - MREs
 - ROM
- Progress intensity/duration
- Low level sport specific drills
- Hop 10x from toes before start running
- Control posterior ankle pain
 - Nussbaum AJSM 2001
“HAS often don’t respect academic degrees or fancy tape jobs”

Contact info: ericn@uognj.com